Minimum Spanning Trees (MST)
1584. Min Cost to Connect All Points
class UnionFind {
vector<int> root;
public:
UnionFind(int n) {
root.resize(n);
iota(root.begin(), root.end(), 0);
}
int find(int p) {
while (p != root[p]) {
root[p] = root[root[p]]; // Path compression
p = root[p];
}
return p;
}
void connect(int a, int b) {
int rootA = find(a), rootB = find(b);
if (rootA != rootB) {
root[rootA] = rootB;
}
}
};
class Solution {
private:
vector<array<int, 3>> edges;
int getDist(int i, int j, const vector<vector<int>>& points) {
return abs(points[i][0] - points[j][0]) + abs(points[i][1] - points[j][1]);
}
public:
int minCostConnectPoints(vector<vector<int>>& points) {
int n = points.size();
if (n == 1) return 0;
// Generate all unique edges (i, j, cost)
for (int i = 0; i < n - 1; ++i) {
for (int j = i + 1; j < n; ++j) {
edges.push_back({i, j, getDist(i, j, points)});
}
}
// Sort edges by cost
sort(edges.begin(), edges.end(), [](const auto& a, const auto& b) {
return a[2] < b[2];
});
UnionFind uf(n);
int cost = 0, connected = 0;
// Kruskal's algorithm
for (const auto& e : edges) {
int a = e[0], b = e[1], w = e[2];
if (uf.find(a) != uf.find(b)) {
uf.connect(a, b);
cost += w;
connected++;
if (connected == n - 1) return cost;
}
}
return -1; // Should not happen for valid input
}
};
1135. Connecting Cities With Minimum Cost
class UnionFind {
private:
vector<int> root;
vector<int> weights;
public:
UnionFind(int n) {
root.resize(n);
weights.resize(n, 1);
iota(root.begin(), root.end(), 0);
}
int find(int p) {
while (p != root[p]) {
root[p] = root[root[p]];
p = root[p];
}
return p;
}
void connect(int x, int y) {
int rootX = find(x), rootY = find(y);
if (weights[rootX] > weights[rootY]) {
root[rootY] = rootX;
} else {
root[rootX] = rootY;
}
}
};
class Solution {
public:
int minimumCost(int n, vector<vector<int>>& connections) {
sort(connections.begin(), connections.end(), [](const vector<int>& a, const vector<int>& b){
return a[2] < b[2];
});
UnionFind uf(n + 1);
int cost = 0, edges = 0;
for (const auto& conn: connections) {
int a = conn[0], b = conn[1];
int rootA = uf.find(a), rootB = uf.find(b);
if (rootA != rootB) {
uf.connect(a, b);
cost += conn[2];
edges += 1;
}
}
return edges == n - 1 ? cost : -1;
}
};
1168. Optimize Water Distribution in a Village
class UnionFind {
vector<int> parent;
public:
UnionFind(int n) {
parent.resize(n);
iota(parent.begin(), parent.end(), 0);
}
int find(int x) {
if (x != parent[x]) {
parent[x] = find(parent[x]);
}
return parent[x];
}
bool connect(int a, int b) {
int rootA = find(a), rootB = find(b);
if (rootA == rootB) return false;
parent[rootA] = rootB;
return true;
}
};
class Solution {
private:
vector<array<int, 3>> edges;
public:
int minCostToSupplyWater(int n, vector<int>& wells, vector<vector<int>>& pipes) {
for (int i = 0; i < wells.size(); ++i) {
edges.push_back({i + 1, 0, wells[i]});
}
for (vector<int> p : pipes) {
edges.push_back({p[0], p[1], p[2]});
}
sort(edges.begin(), edges.end(), [](const auto& a, const auto& b){
return a[2] < b[2];
});
UnionFind uf(n + 1);
int total_cost = 0, count = 0;
for (const auto& [a, b, cost] : edges) {
if (uf.connect(a, b)) {
total_cost += cost;
}
}
return total_cost;
}
};
Last updated
Was this helpful?